Modelling The Effects of Density Gradients and Fluctuations on the Apparent Sizes and Positions of Low Frequency Solar Radio Sources
Date Submitted
2017-05-03 15:51:47
LOFAR
Benjamin Alcock
University of Glasgow
Poster
Eduard Kontar (University of Glasgow), Natasha Jeffrey (University of Glasgow)
Recent high spatial and temporal resolution imaging of rapid variations in Type-III solar radio burst characteristics has enabled us to observe rapid variations in Type-III solar radio burst characteristics, revealing fast growth of the Type-III source and movement of the source centroid. In this work, we use a Monte-Carlo ray tracing simulation to model the passage of low frequency (5-240 MHz) radio waves through the solar corona from a point source, considering both isotropic and dipole emission. We model the effects of random density fluctuations and an isotropic density gradient on the transport of the rays, varying the strength of the scattering to observe the effects on images of the source from an observer at 1 AU. Absorption of photons is included, and the effects on the reproduced images and flux curves are observed. The apparent source size and centroid position are tracked through the simulation, and we find a general increase in source size with time, and a variation of centroid position in both directions throughout the simulation. We find that the size of the variation is strongly dependant upon frequency, with lower frequency sources appearing to move further on the disk than higher frequency sources. We also observe the strength of the effects at different viewing angles, finding that the greatest variation occurs closer to the solar limb. Further observational work is required to limit the scattering parameters, in order to allow for comparison with current radio images.